probabilistic_models module
- class probabilistic_model.probabilistic_models.Exponential(X_values, Y_values, X_values2=array([], dtype=float64))[source]
Bases:
ProbModel
- log_likelihood(params, temp, sigma_values, strain_values=array([], dtype=float64))[source]
Log likelihood
- Parameters:
params (list) – parameters that are to be determined
temp (np.ndarray)
sigma_values (np.ndarray)
strain (np.ndarray) – Defaults to np.array([]).
- Returns:
Gives a negative sum of log likelihood for given data
- predict(cdf, temperature_values)[source]
To predict values
- Parameters:
cdf (float)
temperature_values (np.ndarray)
strain_values (np.ndarray) – Defaults to np.array([])
- Returns:
Predict values according to the trained model
- property st_description
- two_var_predict(cdf, temperature_values, strain_values, params)[source]
To predict values when there are two accelerating variables
- Args:
cdf (float) temperature_values (np.ndarray) strain_values (np.ndarray) params (np.ndarray): Parameters that will be needed to predict values
u,w,v= params.
- Return type:
ndarray
- class probabilistic_model.probabilistic_models.Gamma(X_values, Y_values, X_values2=array([], dtype=float64))[source]
Bases:
ProbModel
- static estimate_params(data, **kwargs)[source]
Fit a gamma model on the data
- Parameters:
data (np.ndarray)
- Returns:
Gives shape and scale of the fitted gamma model
- log_likelihood(params, temp, sigma_values, strain_values=array([], dtype=float64))[source]
Log likelihood
- Parameters:
params (list) – parameters that are to be determined
temp (np.ndarray)
sigma_values (np.ndarray)
strain (np.ndarray) – Defaults to np.array([]).
- Returns:
Gives a negative sum of log likelihood for given data
- predict(cdf, temperature_values, strain_values=array([], dtype=float64))[source]
To predict values
- Parameters:
cdf (float)
temperature_values (np.ndarray)
strain_values (np.ndarray) – Defaults to np.array([])
- Returns:
Predict values according to the trained model
- property st_description
- two_var_predict(cdf, temperature_values, strain_values, params)[source]
To predict values when there are two accelerating variables
- Args:
cdf (float) temperature_values (np.ndarray) strain_values (np.ndarray) params (np.ndarray): Parameters that will be needed to predict values
shape,u,w,v= params.
- Return type:
ndarray
- class probabilistic_model.probabilistic_models.Gumbell(X_values, Y_values, X_values2=array([], dtype=float64))[source]
Bases:
ProbModel
- static estimate_params(data, **kwargs)[source]
Fit a gumbell model on the data
- Parameters:
data (np.ndarray)
- Returns:
Gives shape and scale of the fitted gumbell model
- log_likelihood(params, temp, sigma_values, strain_values=array([], dtype=float64))[source]
Log likelihood
- Parameters:
params (list) – parameters that are to be determined
temp (np.ndarray)
sigma_values (np.ndarray)
strain (np.ndarray) – Defaults to np.array([]).
- Returns:
Gives a negative sum of log likelihood for given data
- predict(cdf, temperature_values, strain_values=array([], dtype=float64))[source]
To predict values
- Parameters:
cdf (float)
temperature_values (np.ndarray)
strain_values (np.ndarray) – Defaults to np.array([])
- Returns:
Predict values according to the trained model
- property st_description
- two_var_predict(cdf, temperature_values, strain_values, params)[source]
To predict values when there are two accelerating variables
- Args:
cdf (float) temperature_values (np.ndarray) strain_values (np.ndarray) params (np.ndarray): Parameters that will be needed to predict values
u,w,scale,v= params.
- Return type:
ndarray
- class probabilistic_model.probabilistic_models.LognormalModel(X_values, Y_values, X_values2=array([], dtype=float64), power_law=False)[source]
Bases:
ProbModel
- static estimate_params(data)[source]
Fit a Lognormal model on the data
- Parameters:
data (np.ndarray)
- Returns:
Gives shape and scale of the fitted Lognormal model
- log_likelihood(params, temp, sigma_values, strain=array([], dtype=float64))[source]
Log likelihood
- Parameters:
params (list) – parameters that are to be determined
temp (np.ndarray)
sigma_values (np.ndarray)
strain (np.ndarray) – Defaults to np.array([]).
- Returns:
Gives a negative sum of log likelihood for given data
- predict(cdf, temperature_values, strain_values=array([], dtype=float64))[source]
To predict values
- Parameters:
cdf (float)
temperature_values (np.ndarray)
strain_values (np.ndarray) – Defaults to np.array([])
- Returns:
Predict values according to the trained model
- property st_description
- two_var_predict(cdf, temperature_values, strain_values, params)[source]
To predict values when there are two accelerating variables
- Args:
cdf (float) temperature_values (np.ndarray) strain_values (np.ndarray) params (np.ndarray): Parameters that will be needed to predict values
k, m, sigma, l= params.
- Return type:
ndarray
- class probabilistic_model.probabilistic_models.LognormalModel3(X_values, Y_values)[source]
Bases:
ProbModel
- static estimate_params(data)[source]
Fit a lognormal 3-parameter model on the data
- Parameters:
data (np.ndarray)
- Returns:
Gives shape and scale of the fitted lognormal 3-parameter model
- log_likelihood(params, temp, sigma_values)[source]
Log likelihood
- Parameters:
params (list) – parameters that are to be determined
temp (np.ndarray)
sigma_values (np.ndarray)
- Returns:
Gives a negative sum of log likelihood for given data
- predict(cdf, temperature_values)[source]
To predict values
- Parameters:
cdf (float)
temperature_values (np.ndarray)
strain_values (np.ndarray) – Defaults to np.array([])
- Returns:
Predict values according to the trained model
- property st_description
- class probabilistic_model.probabilistic_models.NormalModel(X_values, Y_values, X_values2=array([], dtype=float64))[source]
Bases:
ProbModel
- static estimate_params(data)[source]
Fit a normal model on the data
- Parameters:
data (np.ndarray)
- Returns:
Gives shape and scale of the fitted normal model
- log_likelihood(params, temp, sigma_values, strain=array([], dtype=float64))[source]
Log likelihood
- Parameters:
params (list) – parameters that are to be determined
temp (np.ndarray)
sigma_values (np.ndarray)
strain (np.ndarray) – Defaults to np.array([]).
- Returns:
Gives a negative sum of log likelihood for given data
- predict(cdf, temperature_values, strain_values=array([], dtype=float64))[source]
To predict values
- Parameters:
cdf (float)
temperature_values (np.ndarray)
strain_values (np.ndarray) – Defaults to np.array([])
- Returns:
Predict values according to the trained model
- property st_description
- two_var_predict(cdf, temperature_values, strain_values, params)[source]
To predict values when there are two accelerating variables
- Args:
cdf (float) temperature_values (np.ndarray) strain_values (np.ndarray) params (np.ndarray): Parameters that will be needed to predict values
sigma, k, m, l= params.
- Return type:
ndarray
- class probabilistic_model.probabilistic_models.WeibullModel(X_values, Y_values, X_values2=array([], dtype=float64), power_law=False)[source]
Bases:
ProbModel
- static estimate_params(data, **kwargs)[source]
Fit a weibull model on the data
- Parameters:
data (np.ndarray)
- Returns:
Gives shape and scale of the fitted weibull model
- log_likelihood(params, temp, sigma_values, strain=array([], dtype=float64))[source]
Log likelihood
- Parameters:
params (list) – parameters that are to be determined
temp (np.ndarray)
sigma_values (np.ndarray)
strain (np.ndarray) – Defaults to np.array([]).
- Returns:
Gives a negative sum of log likelihood for given data
- predict(cdf, temperature_values, strain_values=array([], dtype=float64))[source]
To predict values
- Parameters:
cdf (float)
temperature_values (np.ndarray)
strain_values (np.ndarray) – Defaults to np.array([])
- Return type:
ndarray
- Returns:
Predict values according to the trained model
- property st_description
Description of this model to be used in the streamlit website
- two_var_predict(cdf, temperature_values, strain_values, params)[source]
To predict values when there are two accelerating variables
- Args:
cdf (float) temperature_values (np.ndarray) strain_values (np.ndarray) params (np.ndarray): Parameters that will be needed to predict values
shape, intercept, slope, v = params.
- Return type:
ndarray
- class probabilistic_model.probabilistic_models.WeibullModel3(X_values, Y_values)[source]
Bases:
ProbModel
- static estimate_params(data, **kwargs)[source]
Fit a weibull 3-parameter model on the data
- Parameters:
data (np.ndarray)
- Returns:
Gives shape and scale of the fitted weibull 3-parameter model
- log_likelihood(params, temp, sigma_values)[source]
Log likelihood
- Parameters:
params (list) – parameters that are to be determined
temp (np.ndarray)
sigma_values (np.ndarray)
- Returns:
Gives a negative sum of log likelihood for given data
- predict(cdf, temperature_values)[source]
To predict values
- Parameters:
cdf (float)
temperature_values (np.ndarray)
- Returns:
Predict values according to the trained model
- property st_description